Using the Style Editors Add-In

Introduction

The style editors are toolboxes for working with colors, fill styles, and line styles. They can be opened directly, or by using the Style Editors toolbox, which has a button to open each toolbox. Each toolbox returns a compound variable that is the result of using that editor: a color, a fill style or a line style, respectively. Each toolbox also displays the text for the call to the appropriate GISDK function that will create the color, fill style or line style. You can copy the text and paste it into a resource file. In the Fill Editor and Line Editor toolboxes you can also paste in the text and load it to see what that style looks like.

To use the style editors, you can use the GIS Developer's Kit add-in to compile Style Editors.rsc to a UI Database in the program folder called Style Editors.dbd, then set up a new Dialog Box add-in, with "Style Editors" as the Description, Name and UI Database. Starting this add-in displays the Style Editors toolbox:

[image: image1.png]- Color Editor]
Fil Editor
Lin Editor

Click the appropriate button to open that editor.

Color Editor

The Color Editor is a toolbox that lets you create colors in a number of different ways, and save the text for the resulting call to the ColorRGB() GISDK function. You can use the Red/Green/Blue (RGB) system for defining colors, which is the usual way to do so. You can also use the Hue/Saturation/Luminance (HSL) system, which is used in the Windows Color dialog box for defining custom colors. You make the choice with the Color System radio list:

[image: image2.png]Color Systerm
RGB € HsL
Redfi =

When you use the RGB system, you can type the value for each color band as a number between 0 and 65535. Higher numbers add more of that color. You can also use special notations for hexadecimal (hex) numbers or for the RGB numbers used in the Windows Color dialog box. If you type "0x" or "x" before a number it will be interpreted as a hex value, from 0 to ffff. If you type "w" before a number it will be interpreted as a Windows RGB value, from 0 to 255. Once you use a spinner to change a number up or down, it will be converted to a regular RGB number.

[image: image3.png]Color Systerm
© RGB H
Hue [=]
Sat o =
Lm. fizn =

[ColorRGE(0.65535.65535)

Clear | Show | Close

When you use the HSL system, you can type each value as a number between 0 and 240. The special value of (-1, 0, 0) is pure black. You can also use the spinners to change numbers up or down. You can switch between the color systems to see the values for a color in each system.

In the HSL system, a hue of 0 or 240 is red, 80 is green, and 160 is blue. A saturation of 0 has no color and 240 is full color. A luminance of 0 is black, 120 is the pure color, and 240 is white.

You can copy the text for the call to ColorRGB() and paste it into a resource file. The Clear button returns the color to black. The Show button forces the current numbers to be used; pressing Enter or clicking on another control after typing a number will do the same. The Close button closes the toolbox, as does clicking the Close (X) box in the upper right corner of the toolbox.

Fill Editor

The Fill Editor is a toolbox that lets you create a fill style, save the text for the resulting call to the FillStyle() GISDK function, and load an existing call to FillStyle().

[image: image4.png]

A fill style is an eight by eight grid of values that indicates a pattern. The values are stored in an array with eight strings of eight characters each. A blank represents the background of the pattern and a non-blank (usually an x) represents the foreground. The SetFillStyleTransparency()GISDK function can be used change the background to transparent; otherwise it is white. The foreground is the color set by calling the appropriate GISDK function, such as SetFillColor(), to set the fill color for a layer or selection set.

Clicking on a button changes that cell in the grid, and updates the sample of the pattern and the text for the call to FillStyle().

You can copy the text for the call to FillStyle() and paste it into a resource file. Before clicking Load, you can copy a call to FillStyle() from a resource file and paste it into the edit text box, or you can make changes to the text. The Load button will load that text; if the FillStyle () call is invalid, a warning message is displayed and the previous fill style is restored. The Clear button returns the fill style to empty (all background, no foreground). The Close button closes the toolbox, as does clicking the Close (X) box in the upper right corner of the toolbox.

Notes on How the Fill Editor Toolbox Works

The pattern is controlled by a grid of sample buttons. The sample area for each sample button is controlled by an element in an array called rowcol, which has eight subarrays of eight integer elements each. For example, clicking in the first row, fifth column changes element rowcol [1][5] between 1 (sample area set to black) and 0 (sample area set to white). A dialog box macro is then called to use this array to create the array of eight-character strings to pass to FillStyle() and the text to show the call to FillStyle(). Though the dBox resource looks complicated, because of the 64 sample button items, it is really quite simple. Also, the ability to position dialog box items with the after and same keywords makes laying out the checkboxes easy.

Loading the text of the call to FillStyle() is done by writing a resource file, compiling it, and executing a macro that turns the text for an array into an actual array. The method is the same as that used for Immediate Execution in the GIS Developer's Kit toolbox. The resource file is deleted after the macro is compiled, and the UI Database is the same as that used by Immediate Execution; the next use of Immediate Execution will recreate the UI Database.

Line Editor

The Line Editor is a toolbox that lets you create a line style, save the text for the resulting call to the LineStyle() GISDK function, and load an existing call to LineStyle(). Line styles have parallel and perpendicular components, and to show a line style you need a line width and an underlying color. The toolbox starts with a width of 4 points, an underlying color that is the same as used by Maptitude and TransCAD, and a default line style with one parallel component and one perpendicular component that looks like a railroad track symbol. The toolbox has three tabs called Line, Parallel, and Perpendicular.

[image: image5.png]Line | Parallel | Perpendicular
w2
Color [~
ColorEdtor

Fed Jo . Clear
Green [44032 = T
Blue [65535 =] e |

ColorRGE(0. 44032 £5535)

LineStyle(Ee(T. 1. 03} {(0.-1.12.25,0.35.0,
izl

Apply | Load | Clear | Show | close

You can copy the text for the call to LineStyle() and paste it into a resource file. The buttons at the bottom of the toolbox are visible for all tabs:

	Button
	Description

	Apply
	Applys the line style, width and color to the current layer, if it is a line or an area layer

	Load
	Loads the text for the call to LineStyle(), in the edit text box, into the parallel and perpendicular components

	Copy
	Clears the line style to the default line style

	Show
	Forces the current settings to be used; pressing Enter or clicking on another control after typing a number will do the same

	Close
	Closes the toolbox, as does clicking the Close (X) box in the upper right corner of the toolbox

Before clicking Load, you can copy a call to LineStyle() from a resource file and paste it into the edit text box, or you can make changes to the text. If the LineStyle() call is invalid, a warning message is displayed and the previous line style is restored.

LineStyle() takes one argument, an array with usually two subarrays, one for parallel components and one for perpendicular components. If there is only one subarray, it is for parallel components. The first element can be null, for a line style with only perpendicular components. If the array is null, the line style is null. Within the subarrays are subarrays for each component. For example LineStyle({{{1, -1, 0}}}) is a simple line style, with one parallel element.

Line Tab

On the Line tab you can set the width and the color of the sample line, which is shown below the tab frame. All widths are in points, and can be a decimal number. The width is limited to 24, so it will not get wider than what can be shown in the sample.

The Color drop-down list shows the default colors. When you choose a color it is loaded into the Color Editor frame, which is a simpler version of the Color Editor toolbox. There is only the RGB system for modifying the color, but hex and Windows numbers are supported. For more information on using the Color Editor, see "Color Editor" above.

The color shown in the color sample is the underlying color. Parallel and perpendicular components can be drawn with that color, or be drawn with a specific color.

The default line style, to get you started, has one parallel component (1, -1, 0) and one perpendicular component (0, -1, 12, 25, 0, 3.5, 0, -4) that looks like a railroad track symbol.

Parallel Tab

A line style can have zero or more parallel components. You must specify the component width, color index, and offset, and you can specify dashes. Parallel components are drawn from first to last, so you may need to reorder the components to get the desired result.

[image: image6.png]Line | Parallel Perpendicular

Wicth [0 = et

Color [Underlyingv] __CePY_|
Delete

Distance [0 = ————

Hove Up
fesisieds =1 Mave Down|
®rsfo303
LineStylef {{0.-1.0.6.0.3.0.31.{0.-1.3.6.0,
. 0.09)

Apply | Load | Clear | Show | close

A component width of 0 indicates a hairline that does not change as the line width is changed. Larger component widths, in points, scale with the line width. The component width can be a decimal number.

The component color index can be the underlying color, or a specific color. The indices are:

	Index
	Color

	-1
	Underlying

	0
	Black

	1
	White

	2
	Red

	3
	Green

	4
	Blue

	5
	Light Blue

	6
	Yellow

The component offset in the distance, in points, that the component is from the centerline of the line style. The component offset can be a decimal number. Positive offsets are to the left (toward the top of the sample) and negative offsets are to the right ((toward the bottom of sample).

The component dashes are optional. The values must be in pairs, first the dash itself and then the space between the dashes. The component dashes can be decimal numbers. You can have any number of pairs, to have a pattern of different dashes and spaces. A warning message will indicate if the values are not in pairs.

A set of buttons lets you manage the parallel components. An equivalent set of buttons manages the perpendicular components:

	Button
	Description

	Add
	Adds a new component, based on the default line style: {1, -1, 0} for parallel and {0, -1, 12, 25, 0, 3.5, 0, -4} for perpendicular

	Copy
	Copies the highlighted component

	Delete
	Deletes the highlighted component

	Move Up
	Moves the highlighted component up

	Move Down
	Moves the highlighted component down

All but the Add button are disabled as appropriate, such as when there are no components, or when no component is highlighted.

With multiple parallel components you can create a wide range of line styles. For example:

· Two parallel components offset the same distance positively and negatively will create a hollow line style

· Another parallel component drawn first, with no offset and a width that is the total of the absolute values of the other offsets, will fill in the hollow

· If the offset parallel components have a specific color and the other parallel component uses the underlying color, you can change the fill color

· If you have a dashed parallel component on top of a solid parallel component, you can create multi-color patterns fills

It is easy to use the toolbox to experiment with different sets of parallel components.

Perpendicular Tab

[image: image7.png]Line Parallel

Perpendicular

2
2

.0,
.0,

width [1 =
Calar [Underlying ¥
Offset [0 =

Dashes [6.6

Delete
Hove Up

Add
Capy

Mave Down

LineStyle({{{1.-1.0. 6. 6}.{0. 0. 2}, {0. 0. -Z}}})

Apply | Load | Clear | Show | close

A line style can have zero or more perpendicular components. You must specify all the component values: width, color index, distance and frequency, and the beginning and end as two coordinates. All of the component values except the color index can be decimal numbers. Perpendicular components are drawn from first to last, after the parallel components are drawn, so you may need to reorder the components to get the desired result.

The component width and color index are the same as for parallel components. The component distance is how far, in points, to go from the beginning of the line before starting the perpendicular component. The component frequency is the spacing, in points, between the center of the instances of the perpendicular component.

The XYs are two coordinates, in points, that indicate the beginning and end of the perpendicular component. A warning message will indicate if there are not two XY pairs. Positive X values are after the center of the perpendicular component (toward the right of the sample) and negative Y values are before the center (toward the left of the sample). Positive Y values are to the left of the center (toward the top of the sample) and negative Y values are to the right of the center (toward the bottom of the sample).

With multiple perpendicular components you can create quite complex line styles. For example:

· If the X values are the same and the Y values are positive and negative, the perpendicular component will go straight across the line style

· If the X values are different and the Y values are positive and negative, the perpendicular component will angle across the line style

· If a second perpendicular component reverses the Y values, the two perpendicular components will cross

· If two perpendicular components start or end at the same XY pair, but have opposite Y values and the same X values for the other XY pair, the two perpendicular components will be at an angle to one another

The best way to learn the possibilities is to experiment.

Notes on How the Line Editor Toolbox Works

Loading the text of the call to LineStyle() is done by writing a resource file, compiling it, and executing a macro that turns the text for an array into an actual array. The method is the same as that used for Immediate Execution in the GIS Developer's Kit toolbox. The resource file is deleted after the macro is compiled, and the UI Database is the same as that used by Immediate Execution; the next use of Immediate Execution will recreate the UI Database.

This editor uses several other Macro resources outside the dBox resource. Most of them are for converting between arrays and text versions of lists and arrays, to provide the synchronization between the components as stored as numbers, as text for the scroll lists, and as text for the call to LineStyle(). Much of the complexity of the dBox resource is maintaining these different versions of the components, and the variables that are used for the controls.

Another Macro resource is for building the spinner lists, which are text arrays. The spinner lists only have three elements, the value before the current value and the value after the current value. If the value is at the lower or upper limit, there are only two elements, the current value and the next higher or lower value, respectively.

