Developing a Subregion Model Tool for the Southern California Association of Governments

> Jim Lam, Caliper Corporation Guoxiong Huang, SCAG Steve Smith, SANBAG TRB Tools of the Trade Conference, Sept. 24, 2010

Outline

- Goal of the Subregion Tool
- Subregion Tool Process
- Subregion Models
- Subregion Tool Demo
- Model Application San Bernardino County
- Future Work

Goal of the Subregion Tool

- Current SCAG Regional Model is 4000+ zones, 100,000+ links, and takes 24 hours to run
- SCAG region contains 170+ cities, 6 counties, and 17 subregions, many with modeling needs
- Very expensive and time consuming to build custom subregion models for each
- Tool designed to quickly use the regional model to create subregion models
- Models designed to focus on subregion, but be compatible with Regional Model.

Typical Subregion Model Development

- Subregion defined
- TAZs and network inside subregion disaggregated
- TAZs and network outside subregion aggregated
- Network, TAZs, demographics, other input manually re-configured
- Model inside subregion much more accurate
- Model outside subregion much less accurate
- Model is calibrated and validated for area inside subregion and model is ignored outside subregion

Subregion Tool Process

 Main goal: automate and standardize conversion

Subregion Conversion Steps

- Define master subregion GIS layer with disaggregation inside subarea
- Run a conversion utility which
 - Auto-disaggregates and aggregates TAZs, demographics and other table inputs
 - Auto-disaggregates and aggregates matrix inputs
 - Auto converts network and creates new centroid connectors

– Run Subregion version of Regional Model

• Similar to Regional Model with exception in aggregation areas to ensure consistency

Inside Subregion

- TAZ attributes re-calculated based upon population/employment ratios, or input from subregion agency
- Centroid connectors redefined automatically, or based on previous definitions

 Additional network links automatically merged in

Inside Subregion Example

Before Disaggregation

After Disaggregation

Outside Subregion

- Centroid connectors preserved, but aggregated to higher lever
- Zonal aggregation models added to
 - Account for aggregation bias
 - Account for trip loss during aggregation

Centroid Aggregation Outside Subregion Map1 - 08r10pl_links **Original Centroid** Original Centroid Connector SuperZone-10.000 SuperZone Connector ())

What is Aggregation Bias?

- Model estimated based upon defined zone system
- Model evaluated based on different set of zones
- Solution: Keep original zone locations
- For each aggregate zone, pick a representative zone

Zonal Aggregation Models

- Intra-Superzone Trips Model
 - To account for underassignment of trips

Zonal Aggregation Models

- Intra-Superzone Trips Model
 - Take intra-superzone trips and load them onto the networks using original connectors
 - Combine with aggregate assigned trips

5		itra	<u>-Sι</u>	Jpe	rz	on	e A	SS	siq	nm	ent	: E>	kar	np	le	
	Aggr	egate		Matrix		Intra	a-Sup	erzo	one T	Frip	ن رکت (Inter	-Sup	erzo	ne Tr	ip
	Matrix2 - AM Trin O	D (DA)														
		26	2	27	28	29	30)	31	32	33	4	34	35	36	3 ^
26	5	3554.24	274.0	07 1677	7.85	636.19	61.56	5	42.44	354.00	38.45	116.9	33	33.16	410.99	241.0
27	,	404.07	3093.6	66 324	.14	423.37	47.03	5	84.28	160.09	34.77	66.8	34 40	64.34	334.86	390.8
28	3	3206.62	373.2	23 12523	8.15	3795.69	283.48	9	77.45	1155.94	54.15	117.2	23 34	49.22	432.32	326.7
29)	722.22	234.4	49 1999		8097.06	404.30	14	82.85	655.69	19.67	25.0	08 10	04.28	112.21	138.9
30)	26.05	12.0	04 61	.28	217.87	35.82		45.85	17.36	1.51	1.3	74	6.80	8.37	10.3 🗸
< <					-	_	_	_	_	_	_	_	_	_	_	>
	Dataview5 - model_s	ed+TAZEQCOUNTY			Matrio	(1 - Output Matrix	(CAR Intra)	r		10-			i.		1	
	[seq	#J CSA	HH	I ot_emp			1369	1375	1376	1378	1379	1382	1388	1390	1393	1399
	13	69 29	53	3579	1369		42.48	0.37	0.25	6.52	48.17	0.20	1.86	0.47	0.53	12.76
	13	75 29	681	208	1375		28.74	18.20	2.29	45.14	79.31	2.26	5.59	2.80	4.86	18.79
	13	76 29	1391	256	1376		33.06	2.35	30.06	24.05	234.79	3.11	32.17	4.01	3.25	58.09
	13	78 29	1202	2544	1378		58.05	8.46	3.60	138.60	152.40	4.19	10.63	4.86	8.66	40.16
	13	79 29	189	20263	1379		45.51	0.79	1.19	16.00	472.89	0.70	10.12	1.62	1.40	64.65
	13	82 29	1506	122	1382		45.99	5.80	8.64	64.76	191.35	22.83	19.27	16.36	8.67	49.05
	13	88 29	2651	1184	1388		59.83	3.11	13.34	37.80	451.41	3.65	98.04	8.46	5.29	139.64
	13	90 29	1059	401	1390		29.38	2.44	2.97	26.39	128.87	5.59	15.26	24.13	7.18	43.47
	13	93 29	955	484	1393		34.02	2.85	1.90	31.34	105.21	1.89	8.64	5.76	28.09	36.85
	13	99 29	1812	7205	1399		62.11	1.20	2.00	22.45	422.19	1.03	16.43	3.05	2.76	210.03
	14	29	2517	5681	1400		55.67	2.46	.39	31.95	356.00	2.29	26.52	6.41	6.74	154.90
	14		2847	3485	1401		66.27	4.10	5 36	45.41	309.60	4.68	25.02	15.79	15.77	125.42
	14	02 209	1282	927	1402		38.74	2.86	2.4	31.06	135.62	1.76	9.30	4.85	11.57	51.28
	Correspondence Lable Disaggregate Intra-Superzone Trip															
						STROP 1					20	147	SI P		17	E L

Demo of Subregional Model

8

()

Verification Results-San Bernardino

Assignment Speed, VMT, VHT, Delay

	Time Period					
Regional Model	AM PEAK	PM PEAK	MIDDAY	NIGHT	TOTAL	
Average Speed (mph), ALL	30.9	26.9	35.8	43.8	32.1	
Vehicle Miles Traveled ('000), ALL	79,792	133,369	117,306	64,827	395,294	
Vehicle Hours Traveled ('000), ALL	2,583	4,956	3,279	1,481	12,298	
Vehicle Hours Delay ('000), ALL	755	1,823	610	86	3,273	
	Time Period					
Subregion Model	AM PEAK	PM PEAK	MIDDAY	NIGHT	TOTAL	
Average Speed (mph), ALL	30.4	27.4	33.7	41.7	31.7	

Vahiala Milaa Travalad (1000) Ald					
venicie ivilies Traveled (1000), ALL	78,453	127,763	117,554	69,276	393,046
Vehicle Hours Traveled ('000), ALL	2,580	4,667	3,492	1,662	12,402
Vehicle Hours Delay ('000), ALL	704	1,526	690	115	3,035
Venicle Hours Traveled ('000), ALL Vehicle Hours Delay ('000), ALL	2,580 704	4,667 1,526	3,492 690	1,662 115	

	Time Period					
Difference	AM PEAK	PM PEAK	MIDDAY	NIGHT	TOTAL	
Average Speed (mph), ALL	-2%	2%	-6%	-5%	-1%	
Vehicle Miles Traveled ('000), ALL	-2%	-4%	0%	7%	-1%	
Vehicle Hours Traveled ('000), ALL	0%	-6%	6%	12%	1%	
Vehicle Hours Delay ('000), ALL	-7%	-16%	13%	34%	-7%	

Sensitivity Results

VMT, VHT and Delay Scenario Comparisons

	VMT	VHT	Delay
Base Scenario	393,046	12,402	3,035
10 min CR Headways	389,881	12,222	2,929
1 Extra Lane on all Freeways	403,079	12,245	2,791
15% Higher Freeway Speeds	399,037	12,082	3,061
Doubling Households and Employment	659,835	29,110	12,181
High Auto Operating Cost	337,881	10,228	2,146

2

Future Work

- Rollout: San Bernardino, North Los Angeles, Imperial County
- Better methods to handle aggregation bias
- Add highway-only and transit-only component
- Add more subregion-specific parameters
- Additional optimization

Thank You

0

())

Caliper Mapping Software