Maptitude GISDK Help

Custom Coordinate System

 

A custom coordinate system may be used by specifying a projection and all the required parameters. Choose the projection name from the abbreviations in the following table:

 

Projection Abbreviation Projection Name Inverse Exists Elliptical Form Valid Parameters
aea Albers Equal Area I E lat_0, lat_1, lat_2, lon_0, x_0, y_0
aeqd Azimuthal Equidistant I E guam, lat_0, lon_0, x_0, y_0
airy Airy lat_0, lat_b, lon_0, no_cut, x_0, y_0
aitoff Aitoff lon_0, x_0, y_0
alsk Alaska Modified Stereographic I E x_0, y_0
apian Apian Globular I lon_0, x_0, y_0
august August Epicycloidal lon_0, x_0, y_0
bacon Bacon Globular lon_0, x_0, y_0
bipc Bipolar Conic of Western Hemisphere I lon_0, ns, x_0, y_0
boggs Boggs Eumorphic lon_0, x_0, y_0
bonne Bonne I E lat_1, lon_0, x_0, y_0
cass Cassini I E lat_0, lon_0, x_0, y_0
cc Central cylindrical I lon_0, x_0, y_0
cea Lambert Cylindrical Equal Area I E lat_ts, lon_0, x_0, y_0
chamb Chamberlin Trimetric lat_1, lat_2, lat_3, lon_0, lon_1, lon_2, lon_3, x_0, y_0
collg Collignon I lon_0, x_0, y_0
crast Craster Parabolic I lon_0, x_0, y_0
denoy Denoyer Semi-Elliptical lon_0, x_0, y_0
eck1 Eckert I I lon_0, x_0, y_0
eck2 Eckert II I lon_0, x_0, y_0
eck3 Eckert III I lon_0, x_0, y_0
eck4 Eckert IV I lon_0, x_0, y_0
eck5 Eckert V I lon_0, x_0, y_0
eck6 Eckert VI I lon_0, x_0, y_0
eqc Equidistant Cylindrical I lat_ts, lon_0, x_0, y_0
eqdc Equidistant Conic I E lat_0, lat_1, lat_2, lon_0, x_0, y_0
euler Euler I lat_1, lat_2, lon_0, x_0, y_0
fahey Fahey I lon_0, x_0, y_0
fouc Foucaut I lon_0, x_0, y_0
fouc_s Foucaut Sinusoidal I lon_0, n, x_0, y_0
gall Gall I lon_0, x_0, y_0
gins8 Ginsburg VIII lon_0, x_0, y_0
gk Gauss-Kruger I E lon_0, zone, zoned
gn_sinu General Sinusoidal Series I lon_0, m, n, x_0, y_0
gnom Gnomonic I lon_0, x_0, y_0
goode Goode Homolosine I lon_0, x_0, y_0
gs48 48 United States Modified Stereographic I x_0, y_0
gs50 50 United States Modified Stereographic I E x_0, y_0
hammer Hammer lon_0, M, W, x_0, y_0
hatano Hatano Asymmetrical Equal-Area I lon_0, x_0, y_0
imw_p International Map of the World Polyconic I E lat_1, lat_2, lon_0, lon_1, x_0, y_0
kav5 Kavraisky V I lon_0, x_0, y_0
kav7 Kavraisky VII I lon_0, x_0, y_0
labrd Laborde I E azi, k_0, lat_0, lon_0, no_rot, x_0, y_0
laea Lambert Azimuthal Equal Area I E lat_0, lon_0, x_0, y_0
lagrng Lagrange lat_1, lon_0, W, x_0, y_0
larr Larrivee lon_0, x_0, y_0
lask Laskowski lon_0, x_0, y_0
lcc Lambert Conformal Conic I E belgian, k_0, lat_0, lat_1, lat_2, lon_0, x_0, y_0
leac Lambert Equal Area I E lat_0, lat_1, lon_0, south, x_0, y_0
lee_os Lee Oblated Stereographic I x_0, y_0
loxim Loximuthal I lat_1, lon_0, x_0, y_0
lsat Space Oblique for LANDSAT I E lsat, path, x_0, y_0
mbt_fps McBryde-Thomas Flat-Pole Sine (No. 2) I lon_0, x_0, y_0
mbt_s McBryde-Thomas Flat-Polar Sine (No. 1) I lon_0, x_0, y_0
mbtfpp McBryde-Thomas Flat-Polar Parabolic I lon_0, x_0, y_0
mbtfpq McBryde-Thomas Flat-Polar Quartic I lon_0, x_0, y_0
mbtfps McBryde-Thomas Flat-Polar Sinusoidal I lon_0, x_0, y_0
merc Mercator I E k_0, lat_ts, lon_0, x_0, y_0
mil_os Miller Oblated Stereographic I x_0, y_0
mill Miller Cylindrical I lon_0, x_0, y_0
moll Mollweide I lon_0, x_0, y_0
mpoly Modified Polyconic I lat_1, lat_2, lon_0, x_0, y_0
murd1 Murdoch I I lat_1, lat_2, lon_0, x_0, y_0
murd2 Murdoch II I lat_1, lat_2, lon_0, x_0, y_0
murd3 Murdoch III I lat_1, lat_2, lon_0, x_0, y_0
nell Nell I lon_0, x_0, y_0
nell_h Nell-Hammer I lon_0, x_0, y_0
nicol Nicolosi Globular lon_0, x_0, y_0
nsper Near-Sided Perspective I h, lat_0, lon_0, x_0, y_0
nzmg New Zealand Map Grid I E
ob_tran General Oblique Transformation I lat_0, lon_0, o_alpha, o_lat_1, o_lat_2, o_lat_c, o_lat_p, o_lon_1, o_lon_2, o_lon_c, o_lon_p, o_proj, x_0, y_0
ocea Oblique Cylindrical Equal Area I alpha, k_0, lat_1, lat_2, lon_1, lon_2, lonc, x_0, y_0
oea Oblated Equal Area I last, lon_0, m, n, theta, x_0, y_0
omerc Oblique Mercator I E alpha, k_0, lat_0, lat_1, lat_2, lon_1, lon_2, lonc, no_rot, no_uor, rot_conv, x_0, y_0
ortel Ortelius Oval lon_0, x_0, y_0
ortho Orthographic I lat_0, lon_0, x_0, y_0
pconic Perspective Conic I lat_1, lat_2, lon_0, x_0, y_0
poly Polyconic (American) I E lat_0, lon_0, x_0, y_0
putp1 Putnins P1 I lon_0, x_0, y_0
putp2 Putnins P2 I lon_0, x_0, y_0
putp3 Putnins P3 I lon_0, x_0, y_0
putp3p Putnins P3' lon_0, x_0, y_0
putp4p Putnins P4' I lon_0, x_0, y_0
putp5 Putnins P5 I lon_0, x_0, y_0
putp5p Putnins P5' I lon_0, x_0, y_0
putp6 Putnins P6 I lon_0, x_0, y_0
putp6p Putnins P6' I lon_0, x_0, y_0
qua_aut Quartic Authalic I lon_0, x_0, y_0
robin Robinson I lon_0, x_0, y_0
rpoly Rectangular Polyconic lat_0, lat_ts, lon_0, x_0, y_0
sinu Sinusoidal I E lon_0, x_0, y_0
somerc Swiss Oblique Mercator I E k_0, lat_0, lon_0, x_0, y_0
stere Stereographic I E k_0, lat_0, lat_ts, lon_0, x_0, y_0
tcc Transverse Central Cylindrical lon_0, x_0, y_0
tcea Transverse Cylindrical Equal Area I k_0, lat_0, lon_0, x_0, y_0
tissot Tissot Conic I lat_1, lat_2, lon_0, x_0, y_0
tmerc Transverse Mercator I E k_0, lat_0, lon_0, south, x_0, y_0
tpeqd Two Point Equidistant I lat_1, lat_2, lon_0, lon_1, lon_2, x_0, y_0
tpers Tilted Perspective I azi, h, lat_0, lon_0, x_0, y_0
tplane Tangent Plane I E h, lat_0, lon_0, x_0, y_0
ups Universal Polar Stereographic I E south
urm5 Urmaev V I alpha, lon_0, n, q, x_0, y_0
urmfps Urmaev Flat-Polar Sinusoidal I lon_0, n, x_0, y_0
utm Universal Transverse Mercator I E lon_0, south
vandg Van der Grinten (I) I lon_0, x_0, y_0
vandg2 Van der Grinten II lon_0, x_0, y_0
vandg3 Van der Grinten III lon_0, x_0, y_0
vandg4 Van der Grinten IV lon_0, x_0, y_0
vh AT&T V & H Coordinates I
vitk1 Vitkovsky I I lat_1, lat_2, lon_0, x_0, y_0
wag1 Wagner I I lon_0, x_0, y_0
wag2 Wagner II I lon_0, x_0, y_0
wag3 Wagner III I lat_ts, lon_0, x_0, y_0
wag4 Wagner IV I lon_0, x_0, y_0
wag5 Wagner V I lon_0, x_0, y_0
wag6 Wagner VI I lon_0, x_0, y_0
wag7 Wagner VII lon_0, x_0, y_0
weren Werenskiold I I lon_0, x_0, y_0
wink1 Winkel I I lat_ts, lon_0, x_0, y_0
wink2 Winkel II lat_1, lon_0, x_0, y_0
wintri Winkel Tripel lat_1, lon_0, x_0, y_0

 

See "Projections and Coordinate Systems" in the Maptitude Help for further information on the most common projections. See User-Defined Coordinate Systems for further information on creating your own coordinate system definitions.

 

If the projection is not marked as having an inverse, then it cannot be used for importing.

 

If the projection is marked as having an elliptical form, then an ellipsoid can be specified by:

If no ellipsoid is specified, the default is Clarke 1866. Otherwise, a spherical form can be used by specifying the radius of the Earth with the "R=len" option string.

 

If units other than meters are used, then the "units=abbr" option is required.

 

False Easting and Northing in local units can be specified using the "x_0=offset" and "y_0=offset" option strings respectively.

 

The projection table above lists the other option strings applicable to each projection. Please refer to the U.S.Geological Survey Open File Report 90-284, "Cartographic Projection Procedures for the UNIX Environment - A User's Manual," and the three update reports ("Cartographic Projection Procedures Release 4 Interim Report," "Cartographic Projection Procedures Release 4 Second Interim Report," and "Supplementary PROJ.4 Notes - Swiss Oblique Mercator Projection") for complete documentation of the option strings. The following table provides a brief description for each option string:

 

Parameter Units Default Description
a meters Length of the major axis of ellipsoid
alpha degrees Azimuth measured clockwise from north of the central line of the projection
azi degrees Azimuth
b meters Length of the minor axis of ellipsoid
belgian Belgian version
e real Eccentricity of the ellipsoid
es real Eccentricity squared of the ellipsoid
f real Flattening (Ellipticity) of the ellipsoid
guam Guam version
h meters Height of view point above the Earth
k_0 real 1 Scale factor
lsat integer LANDSAT satellite number
lat_0 degrees Central Parallel
lat_1 degrees First Parallel
lat_2 degrees Second Parallel
lat_3 degrees Third Parallel
lat_b degrees Angular Distance
lat_ts degrees 0 Latitude of true scale
lon_0 degrees 0. Central Meridian
lon_1 degrees First Meridian
lon_2 degrees Second Meridian
lon_3 degrees Third Meridian
lonc degrees Central Line of Projection
m real Real value
M real Real value
n real Real value
no_cut Don't limit extent of projection
no_rot No rotation
no_uor No offset to pre-rotated axis
ns Non-skewed
o_alpha degrees Oblique azimuth
o_lat_1 degrees Oblique First Parallel
o_lat_2 degrees Oblique Second Parallel
o_lat_c degrees Oblique Central Parallel
o_lat_p degrees Oblique Pole Parallel
o_lon_1 degrees Oblique First Meridian
o_lon_2 degrees Oblique Second Meridian
o_lon_c degrees Oblique Central Meridian
o_lon_p degrees Oblique Pole Meridian
o_proj string Parameters for projection
path integer Path number
q real Real value
R meters Radius of spherical Earth
rf real Reciprocal of the Flattening (Ellipticity) of the ellipsoid
rot_conv degrees Origin convergence angle
south Southern hemisphere: southern oriented for tmerc and False Northing for utm
theta degrees Value
W real Real value
x_0 local 0. False Easting
y_0 local 0. False Northing
zone integer Zone number
zoned Add False Easting based on zone number

 

Example

// For Brazil

...

{"Projection", "lcc", {"ellps=GRS67", "units=m", "lon_0=0", "lat_1=12S", "k_0= 1.", "x_0=0", "y_0=0"}

...

 

 

©2025 Caliper Corporation www.caliper.com