| Maptitude GISDK Help |
A custom coordinate system may be used by specifying a projection and all the required parameters. Choose the projection name from the abbreviations in the following table:
| Projection Abbreviation | Projection Name | Inverse Exists | Elliptical Form | Valid Parameters |
|---|---|---|---|---|
| aea | Albers Equal Area | I | E | lat_0, lat_1, lat_2, lon_0, x_0, y_0 |
| aeqd | Azimuthal Equidistant | I | E | guam, lat_0, lon_0, x_0, y_0 |
| airy | Airy | lat_0, lat_b, lon_0, no_cut, x_0, y_0 | ||
| aitoff | Aitoff | lon_0, x_0, y_0 | ||
| alsk | Alaska Modified Stereographic | I | E | x_0, y_0 |
| apian | Apian Globular I | lon_0, x_0, y_0 | ||
| august | August Epicycloidal | lon_0, x_0, y_0 | ||
| bacon | Bacon Globular | lon_0, x_0, y_0 | ||
| bipc | Bipolar Conic of Western Hemisphere | I | lon_0, ns, x_0, y_0 | |
| boggs | Boggs Eumorphic | lon_0, x_0, y_0 | ||
| bonne | Bonne | I | E | lat_1, lon_0, x_0, y_0 |
| cass | Cassini | I | E | lat_0, lon_0, x_0, y_0 |
| cc | Central cylindrical | I | lon_0, x_0, y_0 | |
| cea | Lambert Cylindrical Equal Area | I | E | lat_ts, lon_0, x_0, y_0 |
| chamb | Chamberlin Trimetric | lat_1, lat_2, lat_3, lon_0, lon_1, lon_2, lon_3, x_0, y_0 | ||
| collg | Collignon | I | lon_0, x_0, y_0 | |
| crast | Craster Parabolic | I | lon_0, x_0, y_0 | |
| denoy | Denoyer Semi-Elliptical | lon_0, x_0, y_0 | ||
| eck1 | Eckert I | I | lon_0, x_0, y_0 | |
| eck2 | Eckert II | I | lon_0, x_0, y_0 | |
| eck3 | Eckert III | I | lon_0, x_0, y_0 | |
| eck4 | Eckert IV | I | lon_0, x_0, y_0 | |
| eck5 | Eckert V | I | lon_0, x_0, y_0 | |
| eck6 | Eckert VI | I | lon_0, x_0, y_0 | |
| eqc | Equidistant Cylindrical | I | lat_ts, lon_0, x_0, y_0 | |
| eqdc | Equidistant Conic | I | E | lat_0, lat_1, lat_2, lon_0, x_0, y_0 |
| euler | Euler | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| fahey | Fahey | I | lon_0, x_0, y_0 | |
| fouc | Foucaut | I | lon_0, x_0, y_0 | |
| fouc_s | Foucaut Sinusoidal | I | lon_0, n, x_0, y_0 | |
| gall | Gall | I | lon_0, x_0, y_0 | |
| gins8 | Ginsburg VIII | lon_0, x_0, y_0 | ||
| gk | Gauss-Kruger | I | E | lon_0, zone, zoned |
| gn_sinu | General Sinusoidal Series | I | lon_0, m, n, x_0, y_0 | |
| gnom | Gnomonic | I | lon_0, x_0, y_0 | |
| goode | Goode Homolosine | I | lon_0, x_0, y_0 | |
| gs48 | 48 United States Modified Stereographic | I | x_0, y_0 | |
| gs50 | 50 United States Modified Stereographic | I | E | x_0, y_0 |
| hammer | Hammer | lon_0, M, W, x_0, y_0 | ||
| hatano | Hatano Asymmetrical Equal-Area | I | lon_0, x_0, y_0 | |
| imw_p | International Map of the World Polyconic | I | E | lat_1, lat_2, lon_0, lon_1, x_0, y_0 |
| kav5 | Kavraisky V | I | lon_0, x_0, y_0 | |
| kav7 | Kavraisky VII | I | lon_0, x_0, y_0 | |
| labrd | Laborde | I | E | azi, k_0, lat_0, lon_0, no_rot, x_0, y_0 |
| laea | Lambert Azimuthal Equal Area | I | E | lat_0, lon_0, x_0, y_0 |
| lagrng | Lagrange | lat_1, lon_0, W, x_0, y_0 | ||
| larr | Larrivee | lon_0, x_0, y_0 | ||
| lask | Laskowski | lon_0, x_0, y_0 | ||
| lcc | Lambert Conformal Conic | I | E | belgian, k_0, lat_0, lat_1, lat_2, lon_0, x_0, y_0 |
| leac | Lambert Equal Area | I | E | lat_0, lat_1, lon_0, south, x_0, y_0 |
| lee_os | Lee Oblated Stereographic | I | x_0, y_0 | |
| loxim | Loximuthal | I | lat_1, lon_0, x_0, y_0 | |
| lsat | Space Oblique for LANDSAT | I | E | lsat, path, x_0, y_0 |
| mbt_fps | McBryde-Thomas Flat-Pole Sine (No. 2) | I | lon_0, x_0, y_0 | |
| mbt_s | McBryde-Thomas Flat-Polar Sine (No. 1) | I | lon_0, x_0, y_0 | |
| mbtfpp | McBryde-Thomas Flat-Polar Parabolic | I | lon_0, x_0, y_0 | |
| mbtfpq | McBryde-Thomas Flat-Polar Quartic | I | lon_0, x_0, y_0 | |
| mbtfps | McBryde-Thomas Flat-Polar Sinusoidal | I | lon_0, x_0, y_0 | |
| merc | Mercator | I | E | k_0, lat_ts, lon_0, x_0, y_0 |
| mil_os | Miller Oblated Stereographic | I | x_0, y_0 | |
| mill | Miller Cylindrical | I | lon_0, x_0, y_0 | |
| moll | Mollweide | I | lon_0, x_0, y_0 | |
| mpoly | Modified Polyconic | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| murd1 | Murdoch I | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| murd2 | Murdoch II | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| murd3 | Murdoch III | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| nell | Nell | I | lon_0, x_0, y_0 | |
| nell_h | Nell-Hammer | I | lon_0, x_0, y_0 | |
| nicol | Nicolosi Globular | lon_0, x_0, y_0 | ||
| nsper | Near-Sided Perspective | I | h, lat_0, lon_0, x_0, y_0 | |
| nzmg | New Zealand Map Grid | I | E | |
| ob_tran | General Oblique Transformation | I | lat_0, lon_0, o_alpha, o_lat_1, o_lat_2, o_lat_c, o_lat_p, o_lon_1, o_lon_2, o_lon_c, o_lon_p, o_proj, x_0, y_0 | |
| ocea | Oblique Cylindrical Equal Area | I | alpha, k_0, lat_1, lat_2, lon_1, lon_2, lonc, x_0, y_0 | |
| oea | Oblated Equal Area | I | last, lon_0, m, n, theta, x_0, y_0 | |
| omerc | Oblique Mercator | I | E | alpha, k_0, lat_0, lat_1, lat_2, lon_1, lon_2, lonc, no_rot, no_uor, rot_conv, x_0, y_0 |
| ortel | Ortelius Oval | lon_0, x_0, y_0 | ||
| ortho | Orthographic | I | lat_0, lon_0, x_0, y_0 | |
| pconic | Perspective Conic | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| poly | Polyconic (American) | I | E | lat_0, lon_0, x_0, y_0 |
| putp1 | Putnins P1 | I | lon_0, x_0, y_0 | |
| putp2 | Putnins P2 | I | lon_0, x_0, y_0 | |
| putp3 | Putnins P3 | I | lon_0, x_0, y_0 | |
| putp3p | Putnins P3' | lon_0, x_0, y_0 | ||
| putp4p | Putnins P4' | I | lon_0, x_0, y_0 | |
| putp5 | Putnins P5 | I | lon_0, x_0, y_0 | |
| putp5p | Putnins P5' | I | lon_0, x_0, y_0 | |
| putp6 | Putnins P6 | I | lon_0, x_0, y_0 | |
| putp6p | Putnins P6' | I | lon_0, x_0, y_0 | |
| qua_aut | Quartic Authalic | I | lon_0, x_0, y_0 | |
| robin | Robinson | I | lon_0, x_0, y_0 | |
| rpoly | Rectangular Polyconic | lat_0, lat_ts, lon_0, x_0, y_0 | ||
| sinu | Sinusoidal | I | E | lon_0, x_0, y_0 |
| somerc | Swiss Oblique Mercator | I | E | k_0, lat_0, lon_0, x_0, y_0 |
| stere | Stereographic | I | E | k_0, lat_0, lat_ts, lon_0, x_0, y_0 |
| tcc | Transverse Central Cylindrical | lon_0, x_0, y_0 | ||
| tcea | Transverse Cylindrical Equal Area | I | k_0, lat_0, lon_0, x_0, y_0 | |
| tissot | Tissot Conic | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| tmerc | Transverse Mercator | I | E | k_0, lat_0, lon_0, south, x_0, y_0 |
| tpeqd | Two Point Equidistant | I | lat_1, lat_2, lon_0, lon_1, lon_2, x_0, y_0 | |
| tpers | Tilted Perspective | I | azi, h, lat_0, lon_0, x_0, y_0 | |
| tplane | Tangent Plane | I | E | h, lat_0, lon_0, x_0, y_0 |
| ups | Universal Polar Stereographic | I | E | south |
| urm5 | Urmaev V | I | alpha, lon_0, n, q, x_0, y_0 | |
| urmfps | Urmaev Flat-Polar Sinusoidal | I | lon_0, n, x_0, y_0 | |
| utm | Universal Transverse Mercator | I | E | lon_0, south |
| vandg | Van der Grinten (I) | I | lon_0, x_0, y_0 | |
| vandg2 | Van der Grinten II | lon_0, x_0, y_0 | ||
| vandg3 | Van der Grinten III | lon_0, x_0, y_0 | ||
| vandg4 | Van der Grinten IV | lon_0, x_0, y_0 | ||
| vh | AT&T V & H Coordinates | I | ||
| vitk1 | Vitkovsky I | I | lat_1, lat_2, lon_0, x_0, y_0 | |
| wag1 | Wagner I | I | lon_0, x_0, y_0 | |
| wag2 | Wagner II | I | lon_0, x_0, y_0 | |
| wag3 | Wagner III | I | lat_ts, lon_0, x_0, y_0 | |
| wag4 | Wagner IV | I | lon_0, x_0, y_0 | |
| wag5 | Wagner V | I | lon_0, x_0, y_0 | |
| wag6 | Wagner VI | I | lon_0, x_0, y_0 | |
| wag7 | Wagner VII | lon_0, x_0, y_0 | ||
| weren | Werenskiold I | I | lon_0, x_0, y_0 | |
| wink1 | Winkel I | I | lat_ts, lon_0, x_0, y_0 | |
| wink2 | Winkel II | lat_1, lon_0, x_0, y_0 | ||
| wintri | Winkel Tripel | lat_1, lon_0, x_0, y_0 |
See "Projections and Coordinate Systems" in the Maptitude Help for further information on the most common projections. See User-Defined Coordinate Systems for further information on creating your own coordinate system definitions.
If the projection is not marked as having an inverse, then it cannot be used for importing.
If the projection is marked as having an elliptical form, then an ellipsoid can be specified by:
Naming it using the "ellps=abbr" option string (see EllipsoidsEllipsoids)
Specifying the length of the major axis with the "a=len" option string, along with one of the following option strings: "b=len", "e=num", "es=num", "f=num", or "rf=num".
If no ellipsoid is specified, the default is Clarke 1866. Otherwise, a spherical form can be used by specifying the radius of the Earth with the "R=len" option string.
If units other than meters are used, then the "units=abbr" option is required.
False Easting and Northing in local units can be specified using the "x_0=offset" and "y_0=offset" option strings respectively.
The projection table above lists the other option strings applicable to each projection. Please refer to the U.S.Geological Survey Open File Report 90-284, "Cartographic Projection Procedures for the UNIX Environment - A User's Manual," and the three update reports ("Cartographic Projection Procedures Release 4 Interim Report," "Cartographic Projection Procedures Release 4 Second Interim Report," and "Supplementary PROJ.4 Notes - Swiss Oblique Mercator Projection") for complete documentation of the option strings. The following table provides a brief description for each option string:
| Parameter | Units | Default | Description |
|---|---|---|---|
| a | meters | Length of the major axis of ellipsoid | |
| alpha | degrees | Azimuth measured clockwise from north of the central line of the projection | |
| azi | degrees | Azimuth | |
| b | meters | Length of the minor axis of ellipsoid | |
| belgian | Belgian version | ||
| e | real | Eccentricity of the ellipsoid | |
| es | real | Eccentricity squared of the ellipsoid | |
| f | real | Flattening (Ellipticity) of the ellipsoid | |
| guam | Guam version | ||
| h | meters | Height of view point above the Earth | |
| k_0 | real | 1 | Scale factor |
| lsat | integer | LANDSAT satellite number | |
| lat_0 | degrees | Central Parallel | |
| lat_1 | degrees | First Parallel | |
| lat_2 | degrees | Second Parallel | |
| lat_3 | degrees | Third Parallel | |
| lat_b | degrees | Angular Distance | |
| lat_ts | degrees | 0 | Latitude of true scale |
| lon_0 | degrees | 0. | Central Meridian |
| lon_1 | degrees | First Meridian | |
| lon_2 | degrees | Second Meridian | |
| lon_3 | degrees | Third Meridian | |
| lonc | degrees | Central Line of Projection | |
| m | real | Real value | |
| M | real | Real value | |
| n | real | Real value | |
| no_cut | Don't limit extent of projection | ||
| no_rot | No rotation | ||
| no_uor | No offset to pre-rotated axis | ||
| ns | Non-skewed | ||
| o_alpha | degrees | Oblique azimuth | |
| o_lat_1 | degrees | Oblique First Parallel | |
| o_lat_2 | degrees | Oblique Second Parallel | |
| o_lat_c | degrees | Oblique Central Parallel | |
| o_lat_p | degrees | Oblique Pole Parallel | |
| o_lon_1 | degrees | Oblique First Meridian | |
| o_lon_2 | degrees | Oblique Second Meridian | |
| o_lon_c | degrees | Oblique Central Meridian | |
| o_lon_p | degrees | Oblique Pole Meridian | |
| o_proj | string | Parameters for projection | |
| path | integer | Path number | |
| q | real | Real value | |
| R | meters | Radius of spherical Earth | |
| rf | real | Reciprocal of the Flattening (Ellipticity) of the ellipsoid | |
| rot_conv | degrees | Origin convergence angle | |
| south | Southern hemisphere: southern oriented for tmerc and False Northing for utm | ||
| theta | degrees | Value | |
| W | real | Real value | |
| x_0 | local | 0. | False Easting |
| y_0 | local | 0. | False Northing |
| zone | integer | Zone number | |
| zoned | Add False Easting based on zone number |
// For Brazil
...
{"Projection", "lcc", {"ellps=GRS67", "units=m", "lon_0=0", "lat_1=12S", "k_0= 1.", "x_0=0", "y_0=0"}
...
| ©2025 Caliper Corporation | www.caliper.com |